Categories
Latest News
Power Wheelchairs vs Electric Scooters
Oct. 30, 2025
At Dianya, we specialize in custom, advanced mobility equipment designed to meet each individual’s unique requirements. With so many options available, selecting the right mobility solution can feel overwhelming—but our team of experts is here to guide you.
What Is a Portable Ultrasound Machine?
Oct. 15, 2025
Portable ultrasound machines offer an efficient and practical solution for performing imaging scans, improving workflow and accessibility for both practitioners and patients.
Jun. 09, 2025
A ventilator is an important mechanical ventilation device that replaces or assists people's breathing.
The core function of a hemodialysis machine is to replace damaged or failing kidneys, sustaining the lives of patients with end-stage renal disease (uremia) and improving their quality of life. Specifically, its primary functions can be categorized into the following four major areas:
1. Removal of metabolic waste products
2. Regulation of water and electrolyte balance
3. Correction of acid-base imbalances
4. Maintenance of internal environmental stability
3-pump system for maximum flexibility – HD, HF, and (online) HDF with automatic selection of treatment mode
Limited disinfectant consumption and short disinfection time
Machine-assisted loading of pump segments
Intuitive user interface with full text guidance
Clear overview of treatment status
Patient card reader
Connection to external networks
Available functions
Blood Pressure Monitoring (BPM)
Blood Volume Monitor (BVM)
Clean Treatment Start (CTS)
Dialysate Infusion Function (DIF)
Dialyzer leakage control
Dose Detector Function
Max-Sub Function
Display and backlight. Clinical dialysis machines commonly have relatively large displays (approximately the size of a computer screen), while home units have much smaller displays. Modern machines normally employ a graphical user interface (GUI) for ease of use. They use liquid-crystal displays (LCDs), instead of cathode ray tube (CRT) monitors, to reduce weight and power consumption.
Maxim supplies LVDS serializers and deserializers uniquely suited for LCD panels. These solutions cover a wide range of bit widths (from 1 to 27) and speeds up to 2.5Gbps. They can translate between different logic levels (e.g., from LVCMOS to LVDS) to ensure compatibility between the processor video interface and the display module.
A complete portfolio of products is available to equalize, multiplex, buffer, and level translate these interfaces as needed to ensure signal integrity. For example, the MAX3803 can equalize LVDS, PECL, or CML signals up to 3.2Gbps to compensate for as much as 40in of FR4 board material, thus ensuring the proper display of data in systems where the display is located far from the graphics processor.
Backlighting is required using either cold-cathode fluorescent lamps (CCFLs) or high-brightness white LEDs. Maxim provides drivers for both types of backlights. Available features include spread-spectrum clocking to reduce electromagnetic interference (EMI) and wide dimming ratios to support a range of ambient lighting situations. With the use of Maxim's ambient light sensors such MAX44009, which has human eye response, the display brightness can be controlled by a closed loop system to automatically adjust it to changing lighting conditions.
Touch screens and keyboards. Maxim offers a variety of keyboard scanners, including devices that allow multiple simultaneous key presses. In many applications, keyboards are being displaced by touch screens, which can improve the user experience when paired with an intuitive GUI.
In touch-screen applications, designers must consider the tradeoffs of using resistive vs. capacitive touch screens. If multiple touches are to be allowed, then capacitive touch screens are needed. If only single-touch inputs are required, the resistive approach has several advantages. For example, resistive touch screens are compelling for cost reasons in displays that are larger than a few inches. Maxim has several newer and smarter touchscreen controllers for both resistive and capacitive types that perform touch-management functions to reduce the burden on the processor managing this interface.
For basic dialysis, there are no electrical connections to the patient. However, some dialysis machines monitor vital signs such as heart rate, temperature, and respiration rate, in addition to the patient's blood pressure. Since these functions are not specific to the dialysis process, they will not be discussed further in this application note.
A running record of the dialysis process for each patient session is kept electronically and made available in a number of ways. Dialysis machines can include USB, Ethernet, and a variety of serial (RS-232, RS-485, RS-422, etc.) interfaces to legacy hospital information systems. Wireless interfaces (such as Wi-Fi®) may also be included for direct connection to hospital wireless networks.
Data card slots are also available on some designs. This allows patients to carry an ID card with personal medical information stored on it to enable automatic setup of many of the machine parameters.
Pumps. Peristaltic pumps are commonly used for driving the various higher volume fluids in the machine: blood, dialysate, water, and saline. This type of pump is very convenient because it does not touch the fluids directly. Instead, a section of flexible tubing runs through the pump mechanism where it is compressed by rollers to push the fluid forward. These pumps require a significant amount of power and are driven by either DC or AC motors with variable speed control. Electronic means must be provided to ensure that the motor is turning at the desired rate. Maxim has Hall-effect sensors that give a fully independent signal picked up from actual shaft rotation, which can be used for redundancy if the motors already have Hall-effect sensors built in. For the lower volume fluids such as heparin, a syringe pump mechanism is commonly used driven by a small stepper motor or DC motor. Precise measurement of proper mechanism advance is needed.
Valves. Several valves with electronic actuation are needed in the machine to allow variable mixing ratios. Various implementations are possible from simple opened/closed valves driven by solenoids to precision variable-position valves driven by stepper motors or other means.
Sensors. Dialysis machines require many different types of sensors to monitor various parameters. Blood pressure at various points in the extracorporeal circuit, dialysate pressure, temperature, O2 saturation, motor speed, dialyzer membrane pressure gradient, and air are all monitored for proper values during dialysis. Unless they have digital outputs, the sensors' analog signals must be amplified, filtered, and digitized before being sent to the controller. The sensors require a range of ADC resolutions depending on the criticality of their accuracy, and a range of sampling speeds depending on the response times required.
Cleaning system. Between patient sessions, any reused components must be sterilized. One approach is to heat water or saline to a high sterilizing temperature and then run it through the machine, both through the extracorporeal circuit and through the dialysate circuit. Whatever cleaning mode is used, the machine may require additional driving and monitoring for proper operation.
Microcontrollers. Because of the large number of input signals to be monitored and the large number of pumps and other mechanisms to be controlled, many of these functions are performed with dedicated microcontrollers for that portion of the system. Controlling the overall system will be a main processor capable of running a full operating system and GUI. Communication between the controllers is required to send data, commands, and alerts.
Fail-safe circuitry. ICs with self-test and fault-reporting capabilities are very useful for maintaining patient safety under single-fault conditions. Additional monitoring circuitry is commonly used to monitor power-supply voltages, while watchdog circuits are used to ensure that microprocessor operation remains within bounds. Both audible and visible alarms are provided to alert users when a warning is needed or a fault condition has occurred.
Due to the long duration of the dialysis process, all dialysis equipment is AC-line powered. Standard AC-DC converters meeting medical safety standards are employed. Due to the variety of components requiring power, a variety of voltage rails are needed at different power levels. A power system with multiple-output switching regulators is needed with a significant amount of linear regulation at the load for noise-sensitive precision circuits.
Safety regulations require power-supply self-monitoring for voltage, temperature, and current flow.
Overvoltage and undervoltage detectors are common. Due to the higher power levels, active cooling is required using fans and temperature sensors in a variety of locations.
Home-use machines include water sterilization capabilities, which can require more power than is available from a standard wall outlet at 15A. Therefore, the power supply must be capable of limiting the current drawn from the AC line and adding in parallel power from a battery (or ultracapacitor).
As discussed above, home-use dialysis machines need to include batteries (or ultracapacitors) to supplement the power supply's output power when heating water for sterilization. These must be charged whenever possible and fuel gauged to indicate when enough capacity is available to proceed with the water sterilization process.
Related Products